himpunan berikut yang merupakan dua himpunan yang ekuivalen adalah

Himpunansemesta S adalah himpunan yang memuat semua anggota himpunan yang dibicarakan. 4. Relasi antar Himpunan: a. Himpunan yang Sama Dua buah himpunan A dan B dikatakan sama, dilambangkan A = B, jika dan hanya jika setiap anggota di A merupakan anggota di B, dan juga setiap anggota di B merupakan anggota di A. b. Himpunanbagian adalah himpunan yang seluruh anggotanya merupakan bagian dari himpunan lain. Himpunan Ekuivalen. Dua himpunan x dan y dikatakan ekuivalen dan dituliskan denga notasi x ~ y, jika kedua himpunan tersebut memiliki anggota yang sama banyaknya. Dengan kata lain, n(x) = n(y) Himpunan yang sama. Dua himpunan x dan y dinyatakan sama Intinyaciri ciri himpunan kosong yaitu tidak memiliki anggota. Untuk memudahkan kalian memahami himpunan (kosong) berikut contohnya. A merupakan himpunan kucing bertanduk; B merupakan himpunan bilangan prima yang habis di bagi 6; C merupakan himpunan bilangan ganjil antara 5-10 yang habis dibagi 11; Ternyata dari ketiga contoh di atas, masing 7 Yang merupakan himpunan kosong adalah a. Himpunan burung yang tidak dapat terbang b. Himpunan bilangan prima genap c. {x∣x<1,x∊A} d. {x∣x<1,x∊C} PEMBAHASAN: Mari kita ulas satu persatu: a. Himpunan burung yang tidak dapat terbang, ada beberapa jenis yang tidak bisa terbang. b. Himpunan bilangan prima genap, 2 adalah bilangan prima Himpunandisebut ekuivalen jika jumlah anggota kedua himpunan sama. Jadi, di antara pilihan jawaban, pasangan himpunan yang memiliki jumlah anggota sama adalah pasangan pada pilihan (A), yaitu dengan 5 anggota. Site De Rencontres Temoins De Jehovah. PARBOABOA - Dalam logika matematika, terdapat konsep kesetaraan yang disebut dengan ekuivalen untuk menyatakan hubungan antar pernyataan. Materi ini biasanya diajarkan untuk siswa Sekolah Menengah Pertama SMP. Mengutip dari Kamus Besar Bahasa Indonesia KBBI, pengertian ekuivalen adalah nilai ukuran, arti atau efek yang sama, seharga, sebanding atau sepadan. Jadi, dua pernyataan dikatakan setara atau ekuivalen jika kedua pernyataan tersebut menghasilkan nilai kebenaran yang sama. Namun, bukan berarti bahwa “ekuivalen” dan “sama dengan” adalah hal yang sama. Pengertian “sama dengan” lebih mengarah pada kondisi yang menunjukkan nilai yang benar-benar sama, sedangkan ekuivalen memiliki kondisi lebih luas daripada itu. Misalkan, dua karung beras dikatakan “sama dengan” jika masing-masing karung memiliki berat dan jenis yang sama. Sementara ekuivalen lebih cocok menggambarkan nilai yang sama/setara namun tidak sejenis. Contohnya 1 kg beras ekuivalen dengan 1 kg gula pasir. Jadi, himpunan beras dan gula pasir dikatakan ekuivalen karena memiliki jumlah yang sama. Dengan perkataan lain, pernyataan majemuk X dan Y ekuivalen, ditulis X≡Y, maka nilai kebenaran pernyataan majemuk X dan Y sama. Bisa juga ditulis dengan p⇒q≡∼p∨q≡∼q⇒∼p. Untuk lebih jelas, yuk simak contoh soal ekuivalen berikut ini! Contoh Ekuivalen X {3,4,5,6,7} Y {1,2,8,9,10} Pembahasan Banyaknya anggota himpunan X adalah nx=5 Banyaknya himpunan anggota y adalah ny=5. Sehingga himpunan X ekuivalen dengan himpunanY. Contoh lainnya A={singa, harimau, cheetah, jaguar} B={hiu, piranha, buaya, belut listrik} Contoh bukan ekuivalen C={merpati, cendrawasih, gagak} D={anjing, kucing, hamster, rubah} Banyaknya anggota himpunan C adalah nC=3 Banyaknya anggota himpunan D adalah nD=4 Sehingga, himpunan C tidak ekuivalen dengan himpunan D. Nah, itulah pengertian ekuivalen adalah kesetaraan beserta contohnya yang perlu untuk kamu ketahui. Semoga ini bisa menjawab tugas belajarmu, ya! Contents1 Pengertian Himpunan Ekuivalen Serta Contoh Pengertian Himpunan Contoh Soal Himpunan Share thisUntuk artikel kali ini kita akan membahas bersama mengenai ekuivalen perlu dijelaskan secara detail, sehingga pembaca dapat memahami secara keseluruhan yang menyangkut pengertian himpunan ekuivalen dan contoh himpunan ekuivalen. Untuk lebih jelasnya lagi silahkan simak terus pembahasan di bawah Himpunan EkuivalenAda sebuah kulkas/lemari es yang mana di dalamnya terdapat 3 jenis minuman yakni Teh, Sirup dan Susu yang juga terdapat 3 jenis buah-buahan seperti Apel, Jeruk dan Mangga. Sekarang kita ibaratkan beberapa jenis minuman tersebut adalah himpunan A sedangkan untuk jenis-jenis buah adalah himpunan B, jadi untuk penulisannya adalah sebagai berikutA = { Teh, Sirup, Susu }B = Apel, Jeruk dan Mangga}Sekarang coba anda perhatikan pada kedua himpunan diatas, apakah kedua di antaranya ada yang sama? Di lihat dari kedua himpunan tersebut yang sama ialah yang memiliki banyak anggotanya, atau dengan kata lain sama-sama 3, yang dapat di tulis nA = 3 dan nB = 3, jadi nA = nB = 3.“Himpunan yang memiliki banyak anggota memiliki pengertian sebagai himpunan ekuivalen atau himpunan ekuipoten”“Himpunan ekuivalen merupakan himpunan yang unsurnya tidak sama, akan tetapi memiliki banyak anggota yang sama.”“Sedangkan untuk pengertian dari Himpunan ekuivalen ialah dua himpunan yang mempunyai jumlah anggota sama.”Contoh Soal Himpunan EkuivalenDiketahuiHimpunan A = {1, 2, 3}, B = a, b, c}, dan E = {1, ½ , 1/3 , ¼ } mana yang ekuivalen di antara tiga himpunan tersebut?JawabnA = 3, nB = 3, dan nC = 4Jadi nA = nB = 3, maka himpunan A ekuivalen BUntuk lebih jelasnya dari jawaban di atas dapat di uraiakan sebagai berikut“Yang di katakan sebagai himpunan ekuivalen adalah Himpunan A dan B, yang mana jika anggota Himpunan A dan B sama-sama banyak”“Dapat di katakan ekivalen/ sederajad dari Dua himpunan A dan B, yakni banyaknya anggota Eleman pada himpunan A sama dengan banyaknya anggota elemen himpunan B.”Demikian ulasan yang bisa kita pelajari bersama tentang Pengertian Himpunan Ekuivalen Serta Contoh Soalnya Lengkap ini. Semoga dengan adanya ulasan ini bisa membantu dan menambah wawasan Anda dan saya ucapkan terima kasih sudah membaca ulasan ini. A. Dua Himpunan yang Sama Perhatikan contoh dibawah ini Ada dua himpunan yang memiliki anggota yang sama, yaitu himpunan A dan B. A = {u,b,i} dan B = {i,b,u} , maka u ∈ A dan u ∈ B, b ∈ A dan b ∈ B, serta i ∈ A dan i ∈ B. Dari himpunan A dan B, setiap anggota A sama dengan anggota pada himpunan B, maka kedua himpunan itu dikatakan sama. Jadi, dua himpunan A dan B sama jika setiap anggota A juga menjadi anggota B dan juga sebaliknya setiap anggota B juga menjadi anggota A. Yang perlu kita ketahui adalah himpunan bagian ditandai dengan lambang ⊂. Misalkan A = {u,b,i}, maka {u} ⊂ A, dapat dibaca bahwa himpunan tersebut memiliki anggota atau beranggotakan u dan ini yang disebut dengan himpunan bagian dari himpunan A, begitu juga dengan b dan juga i merupakan anggota dari himpunan A. Mari kita perhatikan gambar dibawah ini! Dari gambar di atas bisa kita ketahui bahwa anggota dari himpunan A dan B adalah sama. B. Himpunan Bagian Himpunan bagian adalah himpunan yang semua anggotanya ada di dalam himpunan tertentu. Misalkan seperti pada gambar dibawah ini Dari gambar diagram venn di atas, bisa kita liat bahwa B ⊂ A, namun A ⊄ B, tapi A ⊃ B ⊃ dibaca memuat. Jadi semua anggota B adalah anggota A, jadi B ⊂ A. C. Dua Himpunan Ekuivalen Dua Himpunan yang dapat berkorespondensi satu-satu dikatakan dua himpunan yang saling ekuivalen. Jadi, dua himpunan yang ekuivalen berarti banyak anggotanya sama. Jika dua himpunan itu A dan B maka nA = nB. Notasi untuk menulis ekuivalen yaitu ∼. Jadi kalau A ekuivalen B dapat di tulis seperti ini A ∼ B. Contoh diagram venn nya seperti dibawah ini Jadi berdasarkan gambar diagram venn diatas, maka dapat kita lihat bahwa kedua himpunan itu tidak mempunyai anggota sekutu namun kedua himpunan itu mempunyai anggota yang banyaknya sama. Sehingga dapat dikatakan kedua himpunan itu berkorespondensi satu-satu artinya dapat dipasangkan satu-satu. D. Himpunan yang Saling Lepas Mari kita perhatikan gambar diagram venn di atas, S = {0,1,2,3} A = {1,2} B = {3} Adakah anggota A yang menjadi anggota B? Atau apakah ada anggota B yang menjadi anggota A? Kalau kedua himpunan tidak memiliki anggota sekutu maka dua himpunan tersebut dikatakan saling lepas. Arti dari sekutu adalah anggota yang dipunyai kedua himpunan yang dimaksud. Hal itu terlihat pada gambar diatas, bahwa anggota A dan B tidak mempunyai anggota sekutu, maksudnya tidak satupun anggota yang dipunyai bersama oleh kedua himpunan itu. E. Himpunan yang Saling tidak Lepas Seperti yang kita perhatikan pada gambar di atas, itulah gambar diagram venn dari dua himpunan yang saling tidak lepas. S = {1,2,3} A = {1,2} B = {2,3} 2 ∈ A sekaligus ∈ B 1 ∈ A, 1 ∈ B 3 ∈ B, 3 ∈ A Jadi dapat kita lihat bahwa Dari dua himpunan A dan B, A ⊄ B dan sebaliknya, maka Ada anggota sekutu anggota yang dipunyai bersama oleh A dan B Ada anggota A yang bukan anggota B Ada anggota B yang bukan anggota A. Dua himpunan itu dikatakan tidak saling lepas. Selain itu juga dua himpunan yang sama juga dikatakan tidak lepas himpunan bagian juga dikatakan tidak saling lepas. Untuk memperdalam pemahaman kita tentang, mencantumkan satu contoh soal dibawah 1 Dari himpunan-himpunan berikut, manakah yang ekuivalen? a {nama-nama hari dalam seminggu} b {bilangan asli kurang dari 10} A. Himpunan Kosong. Himpunan kosong adalah himpunan yang tidak mempunyai anggota. Himpunan kosong ditulis dengan notasi {$\$} atau $\varnothing$ Contoh 1. Himpunan bilangan prima antara 7 dan 11. 2. P = {xx < 1, x $\in$ bilangan asli} B. Himpunan Semesta. Himpunan semesta adalah himpunan yang memuat semua objek yang dibicarakan, sehingga himpunan semesta disebut juga semesta pembicaraan. Contoh 1. A = {2, 3, 5, 7, 11} himpunan semesta dari A bisa berupa i. S = bilangan prima, ii. S = bilangan asli, iii. S = bilangan cacah, dan lain-lain. 2. P = {kambing, sapi, kerbau} Himpunan semesta dari P bisa berupa i. S = {hewan berkaki empat} ii. S = {hewan menyusui} iii. S = {hewan pemakan rumput} dan lain-lain. Himpunan semesta dilambangkan dengan $S$. Himpunan semesta digambarkan berupa persegi panjang pada diagram venn. C. Himpunan Tak Berhingga. Himpunan tak berhingga adalah himpunan yang anggotanya tidak terbatas banyaknya, sehingga banyak anggotanya tidak dapat dihitung. Contoh 1. Q = {bilangan asli lebih dari 5} 2. K = {1, 3, 5, 7, . . .} D. Himpunan Berhingga. Himpunan berhingga adalah himpunan yang banyak anggotanya terbatas. Contoh 1. A = {bilangan prima kurang dari 15} 2. P = {6, 7, 9} E. Himpunan Bagian. Himpunan P merupakan himpunan bagian dari Q jika setiap anggota P adalah anggota Q. P himpunan bagian dari Q dituliskan dengan notasi $P \subset Q$. contoh 1. P = {3, 7, 11}, Q = {1, 3, 5, 7, 9, 11, 13} Karena setiap anggota P adalah anggota Q, dengan kata lain semua anggota P termuat di dalam Q, maka himpunan P adalah himpunan bagian dari himpunan Q, ditulis $P \subset Q$ 2. A = {3, 4, 5, 6, 7, 8, 9}, B = {2, 4, 6} Tidak semua anggota B merupakan anggota himpunan A, sehingga himpunan B bukanlah himpunan bagian dari himpunan A. Setiap himpunan kosong $\varnothing$ selalu menjadi himpunan bagian dari suatu himpunan. Jika banyak anggota himpunan A adalah n, maka banyak himpunan bagian dari A adalah $\boxed{2^n}$. Banyaknya himpunan bagian dari A yang banyak anggotanya m adalah $\boxed{C_{m}^{n} = \dfrac{n!}{n-m!.m!}}$ $n! = n.n - 1.n - 2.n - 3..... Contoh soal 1. Jika A = {5, 9, 11}, maka banyak himpunan bagian dari A adalah . . . . Pembahasan Banyak anggota dari himpunan A adalah 3. Berarti n = 3. Himpunan bagian dari A adalah { } → beranggotakan nol anggota himpunan kosong {5}, {9}, {11} → beranggotakan satu anggota. {5, 9}, {5, 11}, {9, 11} → beranggotakan dua anggota. {5, 9, 11} → beranggotakan tiga anggota. Banyaknya himpunan bagian dari A adalah 8. Banyaknya himpunan bagian dengan nol anggota = 1. Banyaknya himpunan bagian dengan satu anggota = 3. Banyaknya himpunan bagian dengan dua anggota = 3. Banyaknya himpunan bagian dengan tiga anggota = 1. Contoh soal 2. Jika P = {a, b, c, d, e, f}, tentukanlah banyak himpunan bagian dari P dan banyaknya himpunan bagian dari P dengan3 anggota. Pembahasan Banyaknya anggota dari himpunan P adalah 6, jadi n = 6. $\bullet$ Banyaknya himpunan bagian $= 2^n$ $= 2^6$ $= 64$. $\bullet$ Banyaknya himpunan bagian dengan 3 anggota $= C_{m}^{n} = \dfrac{n!}{n-m!.m!}$ $= \dfrac{6!}{6-3!.3!}$ $= \dfrac{6!}{3!.3!}$ $= \dfrac{ $= 20$Hubungan Antar HimpunanA. Himpunan Ekuivalen. Dua himpunan dikatakan ekuivalen jika kedua himpunan tersebut memiliki banyak anggota yang sama. Contoh A = {1, 2, 3, 4} → nA = 4. B = {a, b, c, d} → nB = 4 nA = nB sehingga himpunan A ekuivalen dengan himpunan B, dinotasikan dengan $A \sim B$. B. Himpunan Sama. Dua himpunan dikatakan sama jika kedua himpunan mempunyai anggota yang tepat sama. Contoh A = {1, 2, 3, 4} B = {1, 2, 3, 4} Karena anggota himpunan A tepat sama dengan anggota himpunan B, maka himpunan A sama dengan himpunan B, dinotasikan dengan A = B. C. Himpunan Saling Lepas. Dua himpunan dikatakan saling lepas jika kedua himpunan tidak memiliki anggota persekutuan. Contoh P = {2, 3, 4} Q = {6, 7, 8, 9} Himpunan P dan Himpunan Q tidak memiliki anggota yang sama atau anggota persekutuan, sehingga himpunan P dan himpunan Q adalah saling lepas. D. Himpunan Tidak Saling Lepas. Dua himpunan dikatakan tidak saling lepas jika kedua himpunan memiliki anggota persekutuan, tetapi tidak menjadi himpunan bagian. Contoh K = {3, 4, 5, 6} L = {1, 2, 3, 4, 7, 9} Himpunan K dan himpunan L memiliki anggota persekutuan yaitu {3, 4}, tetapi K bukanlah himpunan bagian dari L dan L bukan himpunan bagian dari Operasi HimpunanA. Irisan Himpunan. Irisan himpunan A dan himpunan B adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan A sekaligus anggota himpunan B, atau Himpunan yang anggota-anggotanya merupakan anggota persekutuan dari himpunan A dan himpunan B. $A \cap B = \{xx \in A \; dan \; x \in B\}$ Contoh P = {2, 3, 4, 5, 6} Q = {5, 6, 7, 8, 9, 10} $P \cap Q = \{5, 6\}$ Note $Jika\ P \subset Q \;maka\; P \cap Q = P$ $Jika\ P = Q \;maka\; P \cap Q = P\; atau\; P \cap Q = Q$ B. Gabungan Himpunan. Gabungan himpunan A dan B adalah himpunan yang anggota-anggotanya adalah anggota himpunan A atau anggota himpunan B. $A \cup B = \{xx\in A \; atau \; x\in B\}$ Contoh A = {2, 5, 7, 9} B = {3, 4, 5, 7, 11, 12} $A \cup B = \{2, 3, 4, 5, 7, 9, 11, 12\}$ Banyak anggota dari gabungan dua himpunan $nA \cup B = nA + nB - nA \cap B$ C. Selisih Himpunan. Selisih himpunan $A\ dan\ B$ atau $A - B$ adalah himpunan semua anggota A yang tidak menjadi anggota B. $A - B = \{xx \in A \; dan\; x \notin B\}$ Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A - B = \{2, 6\}$ D. Jumlah Himpunan. Jumlah himpunan A dan himpunan B adalah himpunan yang anggotanya merupakan gabungan dari himpunan A dan himpunan B, tetapi bukan irisan A dan B. Contoh A = {2, 3, 5, 6, 7} B = {1, 3, 5, 7, 9, 11} $A + B = \{1, 2, 6, 9, 11\}$ E. Komplemen Himpunan. Komplemen Himpunan A adalah suatu himpunan yang anggota-anggotanya merupakan anggota himpunan $S$ yang bukan A. Komplemen dari himpunan A dinotasikan dengan $A'$ atau $A^c$. $A'\ atau\ A^c = \{xx \notin A \;dan\; x \in S\}$Sifat-sifat Operasi HimpunanA. Sifat Komutatif. $\bullet$ $A \cap B = B \cap A$ $\bullet$ $A \cup B = B \cup A$ B. Sifat Assosiatif. $\bullet$ $A \cap B \cap C = A \cap B \cap C$ $\bullet$ $A \cup B \cup C = A \cup B \cup C$ C. Sifat Distributif. $\bullet$ $A \cap B \cup C = A \cap B \cup A \cap C$ $\bullet$ $A \cup B \cap C = A \cup B \cap A \cup C$ D. Dalil De' Morgan. $\bullet$ $A \cap B^c = A^c \cup B^c$ $\bullet$ $A \cup B^c = A^c \cap B^c$Contoh Soal dan Pembahasan Operasi Himpunan1. Di antara kumpulan-kumpulan berikut, yang merupakan himpunan adalah. . . . A. Kumpulan anak-anak yang rajin B. Kumpulan hewan yang bertubuh besar C. Kumpulan guru-guru yang sabar D. Kumpulan hewan berbulu. Kumpulan yang merupakan himpunan adalah kumpulan hewan berbulu, karena definisinya jelas dan bisa didata anggota himpunannya. Rajin, besar, dan sabar sifatnya relatif dan tidak jelas kategorinya. jawab D. 2. Himpunan bilangan prima ganjil yang kurang dari 15 adalah . . . . A. {2, 3, 5 , 7, 11, 13} B. {3, 5, 7, 9, 11, 13} C. {3, 5, 7, 9, 11, 13, 15} D. {3, 5, 7, 11, 13} Bilangan prima ganjil yang kurang dari 15 adalah {3, 5, 7, 11, 13} → D. 3. {4, 5, 6, 7} jika dinyatakan dengan kata-kata adalah . . . . A. Himpunan bilangan asli antara 4 dan 7 B. Himpunan bilangan asli antara 3 dan 8 C. Himpunan bilangan asli dari 3 sampai 8 D. Himpunan bilangan asli dari 4 sampai 8 Himpunan bilangan asli antara 4 dan 7 adalah {5, 6}. Himpunan bilangan asli antara 3 dan 8 adalah {4, 5, 6, 7}. Himpunan bilangan asli dari 3 sampai 8 adalah {3, 4, 5, 6, 7, 8}. Himpunan bilangan asli dari 4 sampai 8 adalah {4, 5, 6, 7, 8}. Jawab B. 4. {3, 5, 7, 9, 11} jika dinyatakan dengan notasi pembentuk himpunan adalah . . . . A. {xx bilangan bulat} B. {xx bilangan asli} C. {x3 ≤ x ≤ 11, x $\in$ bilangan bulat} D. {x3 ≤ x ≤ 11, x $\in$ bilangan ganjil} {3, 5, 7, 9, 11} adalah bilangan ganjil dari 3 sampai 11. Jika dituliskan dengan notasi pembentuk himpunan menjadi {x3 ≤ x ≤ 11, x $\in$ bilangan ganjil} → D. 5. Diketahui A = {y2 < y ≤ 6, y $\in$ bilangan cacah}. Jika dinyatakan dengan mendaftar anggota-anggota dari A adalah . . . . A. {2, 3, 4, 5, 6} B. {3, 4, 5} C. {3, 4, 5, 6} D. {2, 3, 4, 5} 2 $\notin$ A, tetapi 6 adalah anggota A, sehingga anggota A adalah {3, 4, 5, 6} → C. 6. Diketahui P = {xx < 8, x $\in$ bilangan asli}, maka banyak anggota himpunan P atan nP adalah . . . . A. 7 B. 8 C. 9 D. 10 P = {1, 2, 3, 4, 5, 6, 7}, banyak anggotanya adalah 7. Jadi nP = 7 → A. 7. Di antara himpunan-himpunan berikut, yang merupakan himpunan kosong adalah . . . . A. {bilangan prima antara 7 dan 11} B. {bilangan genap habis dibagi 3} C. {bilangan kelipatan 2 dan 5} D. {bilangan cacah kurang dari 2} Tidak ada bilangan prima antara 7 dan 11. Jadi bilangan prima antara 7 dan 11 adalah himpunan kosong. → A. 8. Diketahui A = {4, 6, 8}, B = {1, 2, 3, 4, 6}, C = {0, 2, 4, 6, 8, 10}. Pernyataan yang benar adalah . . . . $A.\; A \subset B$ $B.\; A \subset C$ $C.\; B \subset C$ $D.\; C \subset B$ Setiap anggota A adalah anggota C, maka $A \subset C$ → B. 9. Diketahui P = {a, b, c, d, e, f, g}, banyak himpunan bagian dari P yang mempunyai tiga anggota adalah . . . . A. 10 B. 15 C. 30 D. 35 $n = 7, m = 3$ $C_{3}^{7} = \dfrac{7!}{7 - 3!.3!}$ $= \dfrac{7!}{4!.3!}$ $= \dfrac{ $= 35$ Jadi banyak himpunan bagian dari P yang mempunyai tiga anggota adalah 35 buah. → D. 10. Diketahui A = {x2 ≤ x < 6} dan B = {x4 ≤ x ≤ 8}. Maka $A \cap B$ adalah . . . . A. {3, 4} B. {3, 4, 5} C. {4, 5} D. {4, 5, 6} A = {2, 3, 4, 5} B = {4, 5, 6, 7, 8} $A \cap B = \{4, 5\}$ → C. 11. Diketahui P = {faktor dari 18} dan Q = {faktor dari 12}. Maka $P \cup Q$ adalah . . . . A. {1, 2, 3, 4, 6, 12} B. {1, 2, 3, 4, 9, 12, 18} C. {1, 2, 3, 4, 6, 9, 12, 18} D. {1, 2, 3, 4, 5, 6, 7, 9, 12, 18} Faktor dari 18 1 x 18 2 x 9 3 x 6 Faktor dari 18 adalah {1, 2, 3, 6, 9, 18} P = {1, 2, 3, 6, 9, 18} Faktor dari 12 1 x 12 2 x 6 3 x 4 Faktor dari 12 adalah {1, 2, 3, 4, 6, 12} Q = {1, 2, 3, 4, 6, 12} $P \cup Q$ = {1, 2, 3, 4, 6, 9, 12, 18} → C. 12. Diketahui $nA = 20$, $nB = 23$, dan $nA \cap B = 15$, maka n$A \cup B$ = . . . . A. 27 B. 28 C. 30 D. 32 $nA \cup B = nA + nB - nA \cap B$ $nA \cup B = 20 + 23 - 15$ $nA \cup B = 28$ → B. 13. Diketahui himpunan K = {1 < x ≤ 11, x bilangan ganjil}. Banyaknya himpunan bagian dari himpunan K yang mempunyai 3 anggota adalah . . . . A. 4 B. 10 C. 20 D. 35 [Soal UN 2018] K = {3, 5, 7, 9, 11} n = 5, m = 3 $C_{3}^{5} = \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{5 - 3!.3!}$ $= \dfrac{5!}{2!.3!}$ $= \dfrac{ $= 10$ → B. 14. Diketahui himpunan semesta S adalah himpunan bilangan cacah yang kurang dari 20. A adalah himpunan bilangan prima antara 3 dan 20. B adalah himpunan bilangan asli antara 2 dan 15. Komplemen dari $A \cap B$ adalah . . . . A. {0, 1, 2, 5, 7, 11, 13, 15, 16, 18} B. {3, 4, 6, 8, 9, 10, 12, 14, 17, 19} C. {3, 4, 6, 8, 9, 10, 12, 14, 15, 17, 19} D. {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} [Soal UN 2018] S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} A = {5, 7, 11, 13, 17, 19} B = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} $A \cap B = {5, 7, 11, 13}$ $A \cap B'$ adalah himpunan S yang bukan $A \cap B$. Jadi $A \cap B'$ = {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19} → E. 15. Wawancara dari 40 orang pembaca majalah diketahui 5 orang suka membaca majalah tentang politik dan olah raga, 9 orang yang tidak menyukai keduanya. Banyak pembaca yang menyukai majalah olah raga sama dengan dua kali banyak pembaca yang menyukai majalah politik. Banyak pembaca yang menyukai majalah politik adalah . . . . A. 8 orang B. 10 orang C. 12 orang D. 14 orang [Soal UN 2018] Misalkan banyak pembaca yang menyukai politik $= x$, maka banyak pembaca yang menyukai olah raga $= 2x$. Pembaca yang suka membaca majalah politik saja $= x - 5$. Pembaca yang suka membaca majalah olah raga saja $= 2x - 5$. Karena jumlah pembaca seluruhnya adalah 40 orang atau nS = 40, maka $x - 5 + 5 + 2x - 5 + 9 = 40$ $3x + 4 = 40$ $3x = 40 - 4$ $3x = 36$ $x = 12$ Banyak pembaca yang menyukai majalah politik $= x = 12$ → C. 16. Jika A = {semua faktor dari 6}, maka banyak himpunan bagian dari A adalah . . . . A. 4 B. 8 C. 9 D. 16 [Soal UN] Faktor dari 6 1 x 6 2 x 3 Jadi, faktor dari 6 adalah {1, 2, 3, 6} A = {1, 2, 3, 6} nA = 4 Banyak himpunan bagian dari $A = 2^4 = 16$ → D. 17. Diketahui A = {xx < 8, x $\in$ C} dan B = {x3 < x ≤ 9, x $\in$ B}, $A \cap B$ adalah . . . . A. {4, 5, 6, 7} B. {4, 5, 6, 7, 8} C. {3, 4, 5, 6, 7} D. {3, 4, 5, 6, 7, 8} [Soal UN] A = {0, 1, 2, 3, 4, 5, 6, 7} B = {4, 5, 6, 7, 8, 9} $A \cap B = \{4, 5, 6, 7\}$ → A. 18. Dari 40 orang anggota karang taruna, 21 orang gemar tenis meja, 27 orang gemar bulutangkis, dan 15 orang gemar tenis meja dan bulu tangkis. Banyak anggota karang taruna yang tidak gemar tenis meja dan bulutangkis adalah . . . . A. 6 orang B. 7 orang C. 12 orang D. 15 orang [Soal UN] Perhatikan gambar ! Yang gemar tenis meja saja = 21 - 15 = 6 orang. Yang gemar bulutangkis saja = 27 - 15 = 12 orang. Yang gemar tenis meja dan bulutangkis = 15 orang. Yang tidak gemar tenis meja dan bulutangkis = n orang. Karena jumlah seluruh siswa = 40 orang atau nS = 40, maka $6 + 15 + 12 + n = 40$ $33 + n = 40$ $n = 40 - 33$ $n = 7\ orang$ → B. 19. Dalam sebuah kelas tercatat 21 siswa gemar olah raga basket, 19 siswa gemar sepak bola, 8 siswa gemar basket dan sepak bola, serta 14 siswa tidak gemar olah raga. Banyak siswa dalam kelas tersebut adalah . . . . A. 46 siswa B. 54 siswa C. 62 siswa D. 78 siswa [Soal UN] Lihat gambar ! Yang gemar basket saja = 21 - 8 = 13 orang. Yang gemar sepak bola saja = 19 - 8 = 11 orang. Yang gemar basket dan sepak bola = 8 orang. Yang tidak gemar olah raga = 14 orang. $nS = 13 + 11 + 8 + 14$ $nS = 46\ orang$ → A. 20. Dari 80 orang siswa yang disurvei tentang kegemaran menonton acara olah raga di televisi, diperoleh 48 orang gemar menonton volley, 42 orang gemar menonton basket, dan 10 orang tidak gemar acara tersebut. Banyak siswa yang hanya gemar menonton basket adalah . . . . A. 22 orang B. 28 orang C. 32 orang D. 36 orang [Soal UN] Lihat gambar ! nS = 80 Misalkan yang gemar menonton volley dan basket = n, maka yang gemar menonton volley saja = 48 - n. yang gemar menonton basket saja = 42 - n. yang tidak gemar menonton volley dan basket = 10. $nS = 48 - n + n + 42 - n + 10$ $80 = 100 - n$ $n = 100 - 80$ $n = 20$ yang gemar menonton basket saja $= 42 - 20 = 22\ orang$ → A. Demikianlah Soal dan Pembahasan Operasi Himpunan. Selamat belajar !SHARE THIS POST

himpunan berikut yang merupakan dua himpunan yang ekuivalen adalah